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SUMMARY

A mathematical simulation of the dispersion of a sample injected in a viscosity-
controlled (Poiseunille flow) stream has been made to determine the behavior of the
sample from injection time until the sample distribution has become substantially
gaussian. The results show that for velocitics much greater than the chromatographic
optimum, and for flow of the order one to ten theoretical plate heights, an unusually
unsymmetrical distribution develops. It gives rise to doubly peaked chromatograms,
in agreement with curves actually observed in corresponding experiments.

INFRODUCTION

When a miscible sample is injected uniformly in a cross-section of a viscous
fluid carrier moving with Poiseuille flow within a round pipe, five phases can be
distinguished in the dispersion of the sample within the carrier.

In a first phase the longitudinal dispersion will be due mainly to the static
diffusion of the sample within the carrier. Designating by D the diffusion constant
of the sample, its dispersion will be measured by the variance of its essentially gaussian
distribution, which is given by:

o> = 2Dt )

where ¢ refers to the time elapsed after injection and where the variance is with
reference to an abscissa x measured along the pipe axis.

When carrier and sample are liquids, for which D is very small, of the order of
10~3 cm?/sec or much less for large molecules, this first phase, during which the
static diffusion given by eqn. 1 is dominant, will be brief, and will be succeeded by
the second phase in which the variance of the sample spread is dominated by the
effect of the carrier flow. The effect can be calculated as follows. Let the velocity
v at any point at a distance r from the pipe axis be given by the expression:

v =2y, (l — ,.z) _ ' | 7 | Q)
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where v, and r, designate the average carrier velocity and pipe radius, respectively.
As we shzll be concerned exclusively with the case in which the pipe inner wall is
not coated by a retentive layer, v, will also be the average sample velocity. Were it
not for the static diffusion measured by eqn. 1, the sample distribution with respect
to x would assume the form of a box-car of length 2v,t. The variance of the box-car is:

o = ®

so that the total variance of the sample, given by the sum of the variances of the
original static diffusion and of the Poiseuille flow spread, woun d be:

0 = 0% L of — 2Dt + (";"’ @

However, as the compenents of the sample near the wall diffuse inward into the
high velocity gradient of the flow near the wall, we enter a third phase in which
the variance increases less rapidly than indicated by the right band side of egn. 4,
as the rear-guard of the sample, which hugs the wall, catches up with the faster
moving parts of the sample. Our study shows that the rear-guard forms a bump
which rides on the rear of the boxcar and grows in width. In this third phase, because
the velocity of the carrier near the pipe axis varies only quadratically with the distance
r from this axis, the sample “front” near the axis is not seriously affected by diffusion
into the slower portion of the carrier. This axial part of the front is affected only
slightly by the small static diffusion in the x direction so that the leading edge of
the box-car substantially retains its shape.

In tke fourth phase, however, the central front has eventually lost its sharpn&es,
and the rear-guard bump grows to consume the former box-car shape. The distribu-
tion has completely degenerated into a transitory shape which becomes more and
more rounded. In the fifth phase, the sample distribution has again become a slightly
skewed gaussian, and the rate of change of variance with time is:

dg®
5 =2D ®)

where D, designates the total diffusion constant first calculated by Westhaver! and
Taylor? and given by

=D+ D, ®)

where D4 designates the dynamic diffusion constant.

As no analy.ical treatment of fluid flow in pipe was available for the third
and fourth phases identified above, it appeared worthwhile to make a computer-
based determination of the several parameters such as variance, skewness, excess,
etc. of the sample distribution during these phases, which is the subject of this paper.
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MATHEMATICAL SIMULATION MODEL -

In the model adopted, the sample within the pipe was considered to be dis-
tributed in 20 “tubes” within the pipe, the mth tube being the pipe portion com-
prised between two conceatric ‘cylinders at the distance [(m — 1)/20] r, and
(m/20) r, from the pipe center, with m =1,2 ... 20.

. These 20 tubes were further divided into a suitable number of “rings of equal
length and of different abscissa, all 20 rings of the same abscissa forming a “slice™
within the pipe. The simulation consisted then of two alternating operations. The
first was a forward “flow’ operation in which sample in each tube was advanced
according to its velocity. A small amount of lengthwise diffusion also took place.
The second operation was an approximation cf purely radial diffusion. Two such
alternating operations are referred to as one “iteration™.

At the outset the sample “injected” was divided into 400 parts, 1 part being
injected in the first, or inner ring (actually a disc) of the injection slice, then 3 parts
in the second ring, 5 in the third, etc., up to 39 parts in the 20th or outer ring.
Since these numbers of parts are proportional to the volumes of the corresponding
rings, an injection representing a uniform concentration of sample throughout the
slice was achieved. As will be seen below, the total sample content of any one tube
never varied.

In the flow operation which followed injection, and which simulated Poiseuille
flow as closely as possible, the content of each ring was redistributed into three rings,
generally in the forward (increasing x) direction in such a manner that the centroid
of these three rings moved a whole or mostly fractional number of slices repre-
sentative of an actual Poiseuille flow. Since this flow was given by eqn. 2, the flow
for the mth ring was calculated as:

27 [ 2w, (1 — 2o rar
b= EVO( ’5)r 22%(1_53_4-_&2) D
2r2
th:rdr o

Of, computer-wise, since r; = (m — 1) ry/20 and r, = mry[20,

2 '
= 2Vo(l — %}) (8)
Thus, the flow was (799/400) v, for the sample content of the inner ring, (795/400)
v, for the content of the second, etc. and (39/400) v, for the twentieth ring with v,
designating the average number of slices by which the total sample content was
translated forward in one iteration.

Let now AN -+ & designate the number of slices by which the sample in any
one given ring was translated forward, with AN an integer and || < 1/2. The content
in the ring was redisiributed among the rings of the same tube AN — 1, AN and
AN + 1 slices ahead, and these three rings were alloted the respective fractions (1 —
2c)%/8, (3/4 — £2), and (1 + 2¢)*/8 of the content of the ring thus moved, so that
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the centroid of the three so-ailoted portions was exactly AN - ¢ slices ahead, while
the variance of this distribution, 67, is given by

o =18? : &)

where S is the physical length corresponding to one slice.

The radial diffusions within any one slice which alternate with the longitudinal
flows are then obtained by redistributing the content of each ring as follows. One
half the content of th= inner ring (;m = 1) is retained in it and the other half is placed
in the second ring. The fraction 59/74 of the content of the outer ring (m = 20) is
retained in it and the balance is placed in the nineteenth ring. As for any other mth
ring, one half its content is retained while the fraction (@2 — 1)/(4n — 2) is placed in
the (in — 1)st ring and the fraction m/(4m — 2) is placed in the @z 4 1)st ring. The
variance thus introduced by this redistribution is then one half of the square of the
thickness of one ring. Normaliizing the pipe radius to unity this variance is:

The two successive operations of translation forward and radial diffusion just
described coanstitute one iteration, and are identically repeated for all rings and slices
of the model several hundreds or even thousands of times to provide the insight
sought in diffusive Poiseuille flow.

It will be noted that since the sample content injected into any two successive
tubes m and (m -+ 1) at the start are respectively proportional to (2m — 1)and (2m + 1)
and since the radial diffusion causes the mth tube to deliver the fraction m/f(é4m — 2)
of its content to the (m 4 1)st tube while receiving the fraction m/(4m + 2) of
the content of the latter, and since no interchanges take place between tubes during
a translation the net interchange between any two consecutive tubes is always zero,
and the content of each tube remains invariant for the entire simulation process.
This parallels the physical model, in which there is no net radial motion of sample
when summed over the whole length of the pipe.

Since the diffusive flow of any sample in a moving carrier is isotropic, the
relationship between radial and longitudinal dimensions in the model should be such
that the diffusion constant D should be equally valid radially and longitudinally.
For the radial diffusion D is obtained from eqn. 1 in which we substitute its value
from eqn. 10 for 62 and unity for the time of one iteration. This gives us:

1 1 | -
@——ZD, or D__lﬁw ) - (!l)

But the same value of D must exist for the longitudinal diffusions which alternate
with radial diffusion. Again setting ¢ = 1 in egn. 1 and using eqn. 9 we should have:

1 : : - '
I =20 = o o 12
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or . 5 . - . i .
’ -1 - R 13)
i.e. the equivalent unit length longitudinally is /300 — 10 V2 slices.

The total diffusion D, of eqn. 6 will be rewritten for the mathematical model
thus:

1 1600v2
D=150 T 4 - a9
where the pipe radius r, has been given its normalized value unity. Likewise, the
mathematical HETP A will be written:

2 1600v,
k= e00m T 22 15)

and will be minimal {optimal) when both terms of the RHS are equal, i.e. for the
chromatographic optimum velocity:

2 _@ey
ot = "(1600)7

Oor.:

Vope = 4% — 0.0043301 units/iteration
and, with egn. 13:

Vopt = (g) (10 V'2) = 0.061237 slices/iferation 16)
which gives for A, :

By, =2 D@0 V3 an

(1600) _ ;3 -3
or, with eqn. 13, k., — 8.165 slices.

RESULTS

Distribution of sample in the pipe

Figs. 1-5 show the simulated distribution of a sample in the pipe as a func-
tion of number of iterations 7 after a uniform injection into the slice at zero on the
abscissa. Each figure is for one value of velocity ratio rangmg from vyfv,,, =1 t0
v‘,/'.r",m = 100. For each distribution graph the abscissa scale is distance along the
pxpe expressed in theoretical plates at the corresponding velocity. The ordinate scale
is sample content, expressed as percent of the slice having the maximum content.
The curve marked “total” is the content of the whole slice. The curve marked “wall”
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is the content of the 20th ring of each slice. The curve marked “center” is the con-
tent cf the first ring, on the pipe axis. Because of its smail volume, the sample content
of this first ring is multiplied by 10 on all the graphs. As the sample peak moves
down the pipe, these three curves preserve their mutual refationship, so they are
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ma:ked in only the first graph of each figure. For. the cases where =3 and 10,
where the number of volume elements containing sample is very small, the distribu-
tions show. osciilatmns or angulantm whxr'h can be 1gno:ed as artifacts of the simula-
tion model. -
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iterations. Distance along the pipe is expressed in theoretical plates at this velocity. See text for
explanation of curves.
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For vyfv.p. = 1, (and for all velocities smaller than this) the distributions always
approximate a gaussian with varying degrees of skewness. The boxcar shapes and
bumps of the second, third and fourth phases do not appesr. This is shown in Fig. 1.

For vo/v,,. = 3, the boxcar shapes of the second and third phases still do not
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appear, but at 100 iterations, the bumpy and strongly skewed shape of the fourth
pha.se appears, and persists to about 600 iterations, where the moderately skewed

gaussian of the fifth- phase begins to appear. This is shown in’ Fzg. 2.
For a velocity ratio v,fv,;. = 10, where dynamic diffusien is 100 times more
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significant than static diffusion the first gaussian phase is too brief to be resolved
by the simulation method. From 10 to 30 iterations, the box-car shape develops. By
30 iterations it has 2 well formed rear-guard bump. By 300 iterations it is in the
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strongly skewed fourth phase, and by 1000 iterations, the moderately skewed gaussian
fifth phase has begun. These results are shown in Fig. 3.

' When vy/v,,. = 30 or greater, the flow is almost totally dominated by dynamic
diffusion. The boxcar and the rear-guard bump develop very early and are well de-
fined. The fifth phase starts after about 1000 iterations when the three inflection
points on the leading edge merge into one.

It can be shown by analysis that after the sample has traveled more than
about 10 theoretical plate heights, its distribution along any pipe radius becomes
approximately gaussian, and that the distribution on the axis leads the distribution
at the wall by the quantity:

2
_ -—-———voro
€= 78D B¢ £

For vg{vy, > 1, this value of e is very nearly 3 plate heights. In the simulation results,
Figs. 3, 4 and 5, for vo/v,, = 10, 30 and 100, respectively, show that the center
distribution leads the wall distribution by about 3 plaies, as expected.

Statistical properties of the distribution in the pipe

Figs. 6 and 7 confirm quantitatively that for vofv,,, of 30 or greater, the shapes
of the distribution curves become virtually indistingnishable. Fig. 6 shows skewness
versus iteration number for different values of vy/v,,. It measures the unsymmetrical
departure from a gaussian shape. It shows that for high velocities all distributions
reach a maximum skewness of about 0.34 at about 380 iterations. For high velocities,
in the fifth phase at about 1000 iterations, the skewness approaches proportionality
to 1/VT. as expected by analogy with the behaviour of skewness in the one-dimen-

sional case of the repeated convolutions of a simple distribution.
Fig. 7 shows the excess versus iteration number for different values of vy/vyy,.

&

SKEWNESS
@

g

§

Fig. 6. Skewness of the simulated sample distribution as a function of time in iterations, with velocity
ratio as a parameter. One theoretical plate is §6.67 iterations everywiere on the abscissa scale. Skew-
ness is defined as (3rd moment)/(2nd moment)*2, where moments are about the mean.
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Fig. 8. Normalized variance of the simulated sample distribution as a furction of time in iterations,
with velocity as a parameter. One theoretical plate is 66.67 iterations everywhere on the abscissa scale.
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It measures the symmetrical departure from a gaussiar shape. The excess for a box-
car shape is —1.20. As velocity increases the excess of the sample distributions ap-
proach this value earlier, and more closely until about 100 iterations. This reflects
the dominance of the velocity gradient in producing the box-car shape in the second
and third phases. Above 100 iterations, the excesses at velocity ratio 10 or greater
rapidly converge with each other and pass through a maximum rate of change at
about 380 iterations. They approach zero with proportionality to 1/7. This is also
as expected by analogy with the excess of repeated one-dimensional convolutions.

Behaviour of the variance

Fig. 8 shows the normalized variance of the total distribution in the pipe as
a function of iterations, with velocity ratio as a parameter. Here, variance is expressed
in units of theoretical plate height squared. It shows that for all velocities less than
Vope, Variance is proportional to time, and increases with the square of velocity.

But for velocities much higher than v,,, variance expressed in plate heights
squared becomes independent of velocity ratio, increasing with the square of time
below about 30 iterations, and proportional to time above zbout 1000 iterations.

Sample content of a given slice and elution of sample from pipe, as functions of time

Fig. 9 shows the simulated sample concentration as a function of time at six
different fixed points along the pipe. The points chosen range from 0.1 to 30 theo-
retical plate heights downstream from the injectioa point. The velocity in the simula-
tion was 100 times v,p,.

At each point two different ways of showing the concentration are presented.
The curve marked “slice content™ is the total sample content of the chosen slice as
a function of iterations. Its physical counterpart is the measurement of concentration
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in a sample cell forming an integral part of the flow path, e.g. the UV absorbance
in a liquid chromatographic system with a flow cell which is a short segment of the
connecting tubing. .

The lower curve marked “elution” is the negative of the derivative with respect
to time of the cumulative content of all slices upsiream of the chosen slice. It rep-
resents the rate at which a sample would be eluted from the pipe if it ended at the
chosen slice. Its physical counterpart is the signal from a detector that consumes the
carrier fluid as it leaves the pipe and responds as a function of time to its average
sample concentration. An example is a flame-ionization detector connected to a capil-
lary gas chromatographic column.

Static diffusion generally causes some net backward flow of a sample as it
disperses in Poiseuille flow, and the simulations for low velocity ratios show this as
sample content apstream of the starting point in Figs. 1 and 2. But for velocity 100
times optimum, at a point 0.1 plates downstream from the start, it is completely
negligible and does not occur in the simulation. For this reason all the elution curves
look exactly the same as if the pipe ended at the chosen slice, even though the actual
simulation was a single computation with the elution computed as the sample distribu-
tion passed each of the six chosen slices.

The slice content and elution curves are different because, while the slice con-
tent ignores the radial velocity gradient in the tube, the elution weights the flow at
the center of the tube more heavily than the walls because the center is flowing faster.
Since the sample distribution in the center of the tube always leads that at the walls,
the elution curves always start, reach their peak, and decay earlier than the slice
content curves. The shapes of the slice content curves are very different from the
shapes of the sample distributions in the pipe because, especially for small numbers
of plate heights, the distributions are changing very rapidly with time as they pass
the points of measurement.

Nevertheless, the passage of the rear-guard bump on the box-car distribution
can be seen in both slice content and elution curves. It produces a doubly peaked
slice content curve most pronounced at about 3 plates.

Experimental observation of doubly peaked curves

For comparison with Fig. 9, Fig. 10 shows actual chromatograms produced
by injecting a sample of sodium benzoate solution in a water mobile phase into a
straight piece of stainless-steel tubing 366 cm long and 0.038 cm nominal I.D. An
injection valve with a 6-ul loop was used. The detector measured UV absorbance
in a flow cell with a volume of less than 3 yl. The system, without the 366-cm pipe
removed had a bandwidth at half height of about 30 xl. Such a system could be
expected to have a response between the slice content and elution curves, because
there is some mixing of center and wall flows in the eell.

The length of the tube in theoretical plates was varied by varying the flow-
rate as shown. The corresponding length in plates was estimated by computing the
plates from the measured width at half height of the nearly gaussian curves obtained
at flow-rates below 0.5 ml/min, and using the rule that plate height is proportional
to flow-rate. This method avoids the need to know either the inside diameter of the
tube or the diffusivity of the sample. Assuming the nominal diameter as correct,
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expressed as number of iterations. See text for explanation of curves.

then the compcndmg dlﬁ’usnvxty for sodium benzoate In water at room temperature
was 8.3-107° cm?/sec.
The progress of the bump on the experimental curves from 3.4 to 9.2 plates
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resembles the shap&e occurring over a somewhat wider range of plates in the simu-
Iated slice content curves. The expermental data, while quite repeatable, were also
quite sensitive to straightness of the tube. The velocm&s in these experiments ranged
from about 1000 vm to about 20,000 v,. , .

4 KL"EEI!!
3.4 PLATES

—

3 ML/MIN
4.6 PLATES

N~

2 ML/MIN

6.9 PLATES

1.5 ML/MIN

9.2 PLATES
[} 1 ' A £ ) I |
9 10 20 3o 40

TIME FROM IRJECTION, SECONDS

Fig. 10. Chromatograms produced by injecting sodium benzoate solution into a straight tube with
0.038 cm LD. and leagth 366 cm. With this tube removed, the injection and datection system had a
respoase to a G-zl injection which had a width at half height of about 30 ui, and was delayed about
58 pl. See text for description.

DISCUSSION

Approximation for the iotal variance

In the pipes and flow cells of liquid chrematographic systems the velocities
are typically thousands of times greater than v,,.. The effect of static diffusion is of
the order of one millionth that of dynamic diffusion, and can be completely neglected.
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The height of 2 theoretical plate is usually so large that the pipes are typically a
fraction of a plate, or a2t most a few plates in length. Under these conditions we can
use results from the simulation model to obtain a useful approxzmatmn of the variance
contributed by these components.

The simulation resulis for v, = 100 v, are typxcal of all higher velocities.
For short times after injection the variance due to the spreading box-car, from eqn.
3is

V6 |
. gy 0mT)
Gi = 3= 3 = 12.572(slices)? 139)

where 7 is the number of iterations. For very large 7, we know the variance increases
linearly with T, with coefficients calculated from eqn. 14:

2
9 _ op, =2 ( 15;:;)% ) = 2500 (slices)?/iteration (20)

We can approximate the total variance ¢* over the whole range of T with a
function that provides the correct square-law coefficient, 4, for small T, and the

correct slope, B for large T. This function is

o = V(KBY + B*T? — KB @n
ForT>K
o2 =~ AT? (22)

while for T > K

do? ~ :
ar = B (23)

and the characteristic value of T which separates square law from linear dependency
is:
B
=1 9

Thus B = 2500 (slices)?/iteration, and 4 = 12.5 (slices)?/(iteration)?, with the
result that K = 100 iterations. The approximated variance becomes:

o = V250,000 + 12.5°T% — 250,0C0 (25)

Fig. 11 is a plot of o./¢?, where o is the total variance from the simulation
madel for. v, = 100 v,,,. The plot is asymptotic to 1 for high values of 7. Below 2
iterations, it becomes slightly less than 1, reflecting the fact that the asymptote is
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Fig. 11. Plot of the ratio ¢2/c* as a function of time in iterations. One theoretical plate is 66.67 itera-
tions everywhere on the abcisiz scale. See text.

valid for very low times only when the velocity ratio approaches infinity. The plot
has its greatest value of about 1.17 at 7 = 100 iterations.

That o2 is smaller than ¢, during the transition from box-car to gaussian
distribution is attributed to the early forshortening of the tail end of the boxcar
shape by diffusion in the high velocity gradient region.

Having learned the critical features of the disiribution from this simulation,
we can devise a generally applicable formula for its physical counterpart.

The number of plates, n represented by the characteristic time of 100 iierations
in the simulation is:

Yo Vo
n =100 T) = 100 (m—) =15 (26)

24

Therefore, in the physical counterpart time to flow 1.5 plates will also be the char-
acteristic time. In the physical pipe, when vy 2> Vopy”

2
_ Velo

h= 24D

The time, #,, to flow one theoretical plate is
_h re

o= = 24D @n

sOo we can set the characteristic time in the formula

K=nt,=1.5¢, (28)
We can now express the normalized variance for a2 box-car at times £ > 1.5 ¢,
as

(vot)?
63 3 2
e = = (29)
h 2 2 3t

=)
24D
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Thus, in the approximate formula for normalized total variance, the coefficient
A of the square law dependency is

1
4= (30)
32

We can now use egns. 24, 28 and 30 to find B.

B— 24k — L G1)
tp

Substituting,

% _Vasp+ L —1s @2

B . 12 .

If we define a function

e(t/r) = %i

we obtain the function plotted in Fig. 11.

Models of the early phases of distribution

A physical counterpart of the simulation described here is the spreading of
an ipjected dye slug in a carrier travelling in a transparent tube. The quantitative
observation of the nearly box-car distribution, with the more or less extended bump
at its upstream portion, could be a worthwhile experiment.
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