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SUMMARY 

A mathematical simulation of the dispersion of a sample injected in a viscosity- 
controlkd @oiseuiUe flow) stream has been made to determine the behavior of the 
sample from injection time until the sample distribution has become substantially 
gaussian. The results show that for velocities much greater than the chromatographic 
optimum, and for flow of the order one to ten theoretkxl plate heights, an unusually 
uns$mmetric& distribution develops. It gives tie to doubly peaked chromatograms, 

in agreement with curves actually observed in corresponding experiments. 

INTECODUCFION 

When a miscible sample is injected uniformly in a cross-section of a viscous 
fluid carrier moving with Poiseuille flow within a round pipe, five phases can be 
distinguished in the dispersion of the sample within the carrier. 

In a first phase the longitudinal dispersion will be due mainly to the static 
diffusion of the sample within the carrier. Designating by D the diKusion constant 
of the sample, its dispersion will be measured by the variance of its essentially gaussian 
distribution, which is given by: 

d=wt (0 

where t refers to the time elapsed after injection and where the varianke is with 
reference to an abscissa x measused along the pipe axis. 

When carrier and sample are liquids, for which D is very small, of the order of 
10S5 cm2/sec or much less for large molecules, this first phase, during which the 
static diEusion given by eqn. 1 is dominant, will be brief, and will be succeeded by 
the second phase in which the variance of the sampIe spread is dominated by the 
effect of the carrier flow. The efkct can be calculated as follows. Let the velocity 
v at any point at a distance r from the pipe axis be given by the expression: 

v=2vo(1 -$) 
0 



where v,, and r. designate the average carrier velocity and pipe radius, respectively. 
As we &ail be concerned exchrsively with the case in which the pipe inner wall is 
not coated by a retentk layer, v. will also be the average sample vehx%y. Were it 
not for the static difksion measured by eqn. f, the sample distribution with respect 
to x would assume the form of a boxcv of length 2v,r. The variance of the boxcat is : 

so that the to*bI variance of the sample, given by the sum of the variances of the 
original static diffusion and of the Poiseuille flow spread, wou d be: 

However, *as the components of the sample near the wall diEUse inward into the 
high veIocity gradient of the flow near the wall, we enter a third phase in which 
+Ae variance increases less rapidly than indicated by the right hand side of eqn. 4, 
as the rear-guard of the sample, which hugs the wall, catches up with the faster 
moving parts of the sample. Our study shows that the rear-guard forms a bump 
which rides on the rear of the boxcar and grows in width. In this third phase, because 
the veIocity of the carrier near the pipe axis varies only quadratically with the distance 
r from this axis, the sampIe “front” nenr the axis is not seriously affected by diffusion 
into the slower -portion of the carrier_ This tial part of the front is a&&A orrly 
slightly by th2 small static diEusion in the x direction so that the leading edge of 
the boxcar sub.stantiaIIy retains its shape. 

In t&e fourth phase, however, the central front has eventually lost its sharpness, 
and the rear-guard bump grows to consume the former box-car shape. The distribu- 
tion has compietely degenerated into a transitory shape which becomes more and 
more rounded In the fifth phase, the sample distribution has again become a slightly 
skewed gaussian, and the rate of change of variance with time is: 

where D, designates the total diffusion constant first cafculated by We&avert and 
TayIol3 and given by 

where Dd designates the dynamic diffusion constant. 
As no ulalykal treatment of fhtid flow in pipe was avaikble for the third 

and fourth phases identified above, it appeared worthwhile to make a computer- 
bass determination of the several parameters such as variance, skewness, excess, 
etc. of the sampk distriiution during these phases, which is the subject of this paper. 
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J.n the model adopted, the sample within the pipe was considered to be dis- 
tributed in 20 “tubes” within the pi&, the mth tube being the pipe portion com- 
prised between two concentric cylinders at the distance [(nz - 1)/20] r, and 
(420) f, from the pipe center, with 1)2 = I,2 . . -20. 

These 20 tubes were further divided into a suitable number of “rings of equal 
length and of diEerent abscissa, all 20 rings of the same abscissa forming a “slice” 
within the pipe. The simulation consisted then of two alternating operations. The 
first was a forward “flow” operation in which sample in each tube was advanced 
according to its velocity_ A small amount of lengthwise difksion also took place. 
The seumd operation was an approximation of purely radial diffusion. Two such 
alternating operations are referred to as one “iteration”. 

At the outset the sample “injected” was divided into 400 parts, 1 part being 
injected in the first, or inner ring (actualiy a disc) of the injection slice, then 3 parts 
in the second ring, 5 in the third, etc., up to 39 parts in the 20th or outer ring. 
Since these numbers of pasts are proportional to the volumes of the corresponding 
rings, an injection representing a uniform concentration of sample throughout the 
slice was achieved. As will be seen below, the total sample content of any one tube 
never varied. 

In the flow operation which followed injection, and which simulated Poiseuille 
flow as closely as possible, the content of each ring was redistributed into three rings, 
generally in the forward (increasing X) direction in such a manner that the centroid 
of these three rings moved a whole or mostly fractional number of slices repre- 
sentative of an actual Poiseuille flow. Since this flow was given by eqn. 2, the ffow 
for the mth ring was calculated as: 

v= = 2v, 1 
f1’ + f2” 

22 
I” 

rdr 
( 

- 7) 
0 

r1 

or, computer-wise, since F, = (nt - 1) r,/20 and rz = mr,,/20, 

y=2Y01-h2-h+1 ( 800 ) 

Q 

Thus, the flow was (799/400) v. for the sampIe content of the inner Tin&, (795/400) 
v. for the content of the second, etc. and (39/400) v, for the twentieth ring with v. 
designating the average number of slices by which the total sample content was 
translated forward in one iteration. 

Let uow AN f E designate the number of slices by which the sample in any 
one given ring was translated forwaS& with AN an integer and ISI I l/2. The content 
in the ring was redistributed among the rings of the same tube AM - 1, AN and 

AN -I- 1 slices ahead, and these three rings were alloted the respective fractions (1 - 
Mz/8. (3/4 - .9), and (1 + 2E)z/S of the content of the ring thns moved, so that 



the centroid of the three so-alloted portions was exactly dN i e slices ahead, while 
the variance of this distribution, 4, is given by 

0+&S (9) 

where S is the physical length corresponding to one slice. 
The cxlial difkions within any one slice which alternate with the Iongitudinal 

flows are then obtained by redistributing the content of each ring as follows. One 
half the content of the inner ring (m = 1) is retained in it and the other half is placed 
in the second ring. The faction 59174 of the content of the outer ring (m = 20) is 
retained in it and the balance is placed in the nineteenth ring. As for any other mth 
ring, one half its content is retained while the Caction (.zz - 1)/(4m - 2) is placed in 
the (m - 1)st ring and the &action m/(4m - 2) is placed in the (m f 1)st ring. The 
variance thus introduced by this redistribution is then one half of the square of the 
thickness of one ring. Normalizing the pipe radius to unity this variance is: 

112 &m-- z-L& 
6) 2 0 

The two successive operations of translation forward and radial diffusion just 
described constitute one iteration, and are identically repeated for all rings and slices 
of the model several hundreds or even thousands of times to provide the insight 
sought in diffusive Poiseuille flow. 

It will be noted that since the sample content injected into any two successive 
tubes m and (m + 1) at the start are respectively proportional to (2m - 1) and (2m f 1) 
and since the radial diffusion causes the mth tube to deliver the fraction nz/(4m - 2) 
of its content to the (m f 1)st tube while receiving l &e faction m/(4m f 2) of 
the content of the latter, and since no interchanges take place between tubes during 
a translation the net interchange between any two consecutive tubes is always zero, 
and the content of each tube remains invariant for the entire simulation process. 
This parallels the physical model, in which there is no net radial motion of sample 
when summed over the whole length of the pipe. 

Since the diffusive flow of any sample in a moving carrier is isotropic, the 
relationship between radial and longitudinal dimensions in the model should be such 
that the diffusion constant D should be equally valid radially and longitudinally. 
For the radial diffusion D is obtained from eqn. 1 in which we substitute its value 
from eqn. 10 for 0: and unity for the time of one iteration_ This gives us: 

I 
-=W, 

1 
or D=1600 (11) 

But the same value of D must exist for the longitudinal diEusions which alternate 
with. radial difksion. Again setting t = 1 in eqn. 1 and using eqn. 9 .we should have: 
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O?? 

S= 
-1.t . . 

+/m 
(13) 

Le. the equivalent unit length longitudinally is *kEEi = 10 fi slices. 
The toti diffusion D, of eqn. 6 will be retitie~ for the mathematical model 

thus: 

04) 

where the pipe radius r, has been given its normalized value unity_ Likewise, the 
mathematical HETP h wdl be written: 

2 16OOv, 
h=EOOv,,+ 24 

and will be minimal (optimal) when both terms of the RHS are equal, i.e. for the 
chromatogxaphic optimum velocity : 

I..& _ (2) (24) _ 
(1600)2 

or: 

d3 
= 0.0043301 units/iteration 

and, with eqn, 13: 

V act = ( ) 2 (IO t/z) = 0.061237 siices/i@xation 
T 

which gives for kpC: 

h C-D: 
=2 m<4w fi 

WOO) & 
= 3 units 

(16) 

or, with eqn, 13, h,,,, = 8.165 slices. 

REsL??Ts 

Distribution of sample in the pipe 
Figs. l-5 show the simuiated distribution of a sample in the pipe as a tic- 

tion of number of iterations T tier a uniform .injection into the slice at zero on the 
absc&a. Each figure is for one value of velocity ratio ranging from volv,,, = 1 to 
v,lv,,, = LOO. For each distribution graph the abscissa scale is distance aIong the 
pipe expressed in theoretical plates at tbiz uxresponding velocity. The ordinate scale 
is sample content, expres&d as percent of the slice having the maximum content. 
The curve marked “total” is the content of the whole slice. The cuNe marked “wall” 



is the c~nterit of the 20th ring of each slice. The curve marked ‘kent&* is tie con- 
tent of the fsst ring, on the pipe axis. Because of its mail vohue, the sample content 
of this ht ring is multiplied by 10 on all the graphs. As the sampledpeak moves 
down the pipe, these three curve preserve their mu+d relationstip, so they are 

a 



tionmodel. 
8 

Fig. 2 Sinmkmi sample dktriiution as a function of tie T for vJvmt = 3. T is expressed in 
iterations Distance dong the pipe is exp& in them&d plates at this veiocity. See text for 
CxpIanation of cYxvcs. 



For Q/V,,=; = 1, (and for all velocities smdler than rhis)'&e~di&%~om always 
approximate a gauss& with varying degrees of skewnessi ‘The boxcar sbapesand 
bumps of the second, third and fourth pbisei do not appear. 3lisi.s shovm in Fig. 1. 

For vQ/v._: = 3,theboxcarshapesof~e~nd~d~phasesstilIdonoP 
x 

T=10 

‘\ 

Fig. 3. Sindated sampIe disdbution as a fur&on of time Tfor v&-, = 10. Tis cxpnsed in ha- 
tions. Distance aIong the pipe is expressed h tIwxctid plates at this w&c&y_ !%e text for expbna- 
tion of CumeL 



L%-, but at 100 iterations, the bumpy and ~strongJy skewed shape of tie fourth 
phase, appears; and persists to abotit 6MI iterations, where the moderately skewed 
gzmssizm of the iXi% phase begins to appear; -This is shown in Fig. 2. 

For a velocity ratio I+,_, = 10, where dynamic dif&skn is 100 times more 

8 

Fig. A Sk&ate-ii sarcple distribution as a funaion of time Tfor v,,/v+ = 30. Tis expressed in item 
tioss Distance along the pipe is txpressed in theoretical plates at this velocity. See text for explant. 
tion of cuTy+s 



sign&ant- tban sfatic difhsion the Erst gzmssian phase is too brief to be resolved 
by the simulation method. From 10 to 30 iterations, the box-car shape develops- By 
30 itentions it has a well formed rear-guard bump. By 300 ihzations it is-in the 

F= 5. Simulated sampIe t3istriiutio1~ as a fmuioa of time .T for FJv-~ = 100. T is expressed in 
itention Disbmx dong the pipe is ezqmsed in thamtid plates at this v&city. See text for cx- 
plaaation of axrvs. 



strongly skewed fourth phase, and by 1000 iterations, ffie moderately skewed gaussian 
f%h phase lms begun. These resul% are shown in Fig. 3. 

when v&& = 30 or greater, the flow is almost totally dominated by dynamic 
diEtsion_ The boxcar and the rear-guard bump develop very early and are well de- 
&ted. The fifth phase starts a&r about ioo0 iterations when the three inflection 
points on the leading edge merge into one. 

It can be shown by analysis that after the sample has traveled more than 
about 10 theoretical plate heights, its distribution along any pipe radius becotnes 
approximately gaussian, and 
at the wall by the quantity: 

VOd 
==80 

that the distribution on the axis leads the distribution 

For %/%,t > 1, tbis value of e is very nearly 3 plate heights. In the simulation results, 
Figs_ 3, 4 and 5, for v,,&~ = IO, 30 and 100, respectively, show that the center 
distribution leads the wall distribution by about 3 plates, as expected. 

Statistical properties of the distribution in the pipe 
Figs. 6 and 7 confirm quantitatively that for vo/vopt of 30 or greater, the shapes 

of the distribution curves become virtually indistingnishable. Fig. 6 shows skewness 
versus iteration number for diEerent values of v,,/v,,~,. It measures the unsymmetrical 
departure from a gaussian shape. it shows that for h&b velocities all distriiutious 
reach a maximum skewness of about 0.34 at about 380 iterations. For high velooities, 
in the fiflh phase at about 1000 iterations, the skewness approaches proportionality 

to l/fi as expected by analog with the behaviour of skewness in the one-dimen- 
sional case of the repeated convolutions of a simple distribution. 

Fig. 7 shows tie excess versus iteration number for different values of vO/vaot. 
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Fig_ 7. Excess of ‘he simdated distribution as a function of time in iterations with veIocity ratio as a 
parameter. One theoretical plate is 66.67 i&r&ions evesywhere on the abscissa scale. Excess is detined 
as (;cth moment)i(2nd moment)z-3. whe moments are about the rne~~. 

Fig_ 8. Normaliz& variance of the simulated sample distribution as a fmxtion of time in iterations, 
with velocity as a parameter_ One tkoreticai plate is 66.67 iterations everywhex on the abscissa scale. 

It measures the symmetrical departure from a gaussiar shape. The excess for a box- 
car shape is -1.20. As velocity increases the excess of the sample distributions ap- 
proach this value earlier, and more closely until about 100 iterations_ This reflects 
the dominance of the velocity _-diem in producing the boxcar shape in the second 
and third phases. Above 100 iterations, the excesses at velocity ratio 10 or greater 
rapidly converge with each other and pass through a maximum rate of change at 
about 380 iterations_ They approach zero with proportionality to L/T. This is also 
as expected by analogy with the excess of repeated one-dimensional convolutions. 

Eehuviour of the variance 

Fig. 8 shows the normalized variance of the total distribution in the pipe as 

a function of iterations, with velocity ratio as a parameter_ Here, variance is expressed 
in units of theoretical plate height squared. It shows that for all velocities less than 
Y Opt, variance is proportional to time, and increases with the square of velocity. 

But for velocities much higher than vcDc, variance expressed in plate heights 

squared becomes independent of velocity ratio, increasing with the square of time 
below about 30 iterations, and proportional to time above about 1000 iterations_ 

Sample content of a given slice and ehtion of sample from pipe, as fiurctions qf time 
Fig_ 9 shows the simulated sample concentration as a function of time at six 

different fixed points along the pipe. The points chosen range from 0.1 to 30 theo- 
retical plate heights downstream from the injection point. The velocity in the simula- 

tion was 100 times voPr_ 
At each point two different ways of showing the concentration are presented. 

The curve marked “slice content” is the total sample content of the chosen slice as 
a function of iterations_ Its physical counterpart is the measurement of concentration 
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in a sample cell forming an integral part of the flow path, e.g. the ti absorbance 
in a liquid chromatographic system with a flow cell which is a short segment of the 
counectiug tubing. 

The lower curve marked “elution” is the negative of the derivative with respect 
to time of the cumulative content of all slices upstream of the chosen slice. It rep- 
resents the rate at which a sample would be eluted from the pipe if it ended at the 
chosen slice. Its physical counterpart is the signal from a detector that consumes the 
carrier fluid as it leaves the pipe and responds as a function of time to its average 
sample concentration. An example is a flame-ionization detector connected to a capil- 
lary gas chromatographic column. 

Static diffusion generally causes some net backward flow of a sample as it 
disperses iu Poiscuille flow, and the simulations for low velocity ratios show this as 
sample content upstream of the starting point in Figs. 1 and 2. But for velocity 100 
times optimum, at a point 0.1 plates downstream from the start, it is completely 
ne&aible and does not occur iu the simulation. For this reason all the elution curves 
lo&ixactly the same as if the pipe ended at the chosen slice, even though the actual 
simulation was a single computation with the elution computed as the sample distribu- 
tion passed each of the six chosen slices. 

The slice content and elution curves are difherent because, while the slice con- 
tent ignores the radial velocity gradient in the tube, the elution weights the flow at 
the center of the tube more heavily than the walls because the center is flowing faster. 
Since the sample distribution in the center of the tube always leads that at the walls, 
the elution curves always start, reach their peak, and decay earlier than the slice 
content curves. The shapes of the slice content curves are very different Tom the 
shapes of the sample distributions in the pipe because, especially for small numbers 
of plate heights, the distributions are changing very rapidly with time as they pass 
the points of measurement. 

Nevertheless, the passage of the rear-guard bump on the box-car distribution 
czn be seen in both slice content and elution curves. It produces a doubly peaked 
slice content curve most pronounced at about 3 plates. 

Experimental observation of doubly peaked curves 

For comparison with Fig. 9, Fig. 10 shows actual chromatograms produced 
by injecting a sample of sodium beuzoate solution in a water mobile phase into a 
straight piece of stainless-steel tubing 366 cm long and 0.038 cm nominal I.D. Au 
injection valve with a 6~1 loop was used. The detector measured IJV absorbance 
in a flow ccl! with a volume of less than 3@. The system, without the 366-cm pipe 
removed had a bandwidth at half height of about 30 pi. Such a system could be 
expected to have a response between the slice content and elution cures, because 
there is some mixing of center and wall flows in the cell. 

The length of the tube in theoretical plates was varied by varying the flow- 
rate as shown. The corresponding length in plates was estimated by computing the 
plates from the measured width at half height of the nearly gaussian curves obtained 
at flow-rates below 0.5 ml/min, and using the rule that plate height is proportional 
to flow-rate. This method avoids the need to know either the inside diameter of the 
tube or the diffusivity of the sample. Assuming the nominal diameter as correct, 
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Fig_ 9. SiznuIati slice content and ehtion 
ity ratio va/vet = 

curves~timearafunctionofIcr?gthofpipeforveloc- 
100. Length of pipe is cxpresss as theoretical pL3tes at this velocity. Time is 

txpre5sed as nurnk of iterations. See text for expIan2tion of curvfs_ 

then the careqxnding qSifGsivity for sodium benzo&e in water at room texa~e 
was 8.3 - 1W6 cm*/sec. 

The progress of the bump on the experimentd curves from 3.4 to 9.2 piates 
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resetn&s the shapes accurriag over a sotiewhai wide range of plates in the simt- 

Iatcd &cc content curves. The apemental W while &ite repeatable, were also 

quite sensitive to strai&tiB of the tube. The vehcities in the experiments ranged 

from abollt Lao0 vagc to about 23,ooo I?,,,. 

f\ 

i 

\ 

4 mumw 
2.4 PLATES 

1.5 MLfmIN 
9.2 PLATS 

I 0 I 9 I 
0 10 20 SO 40 

Fii. 10. Ckomatogra.ms produced by is&x&g sodium benzwte solution into a straight tube with 
0.038 cm K.D. and length 366 cm_ With this tube removed, the injection and detection system had a 
response to a 6~1 iojection which bad a width at half height of about 30 pl, and was delayed about 
58 ~1. See text for description. 

DISCUSSION 

Approxz3nasioft for the total varimce 
In the pipes and 0ow c&s of liquid chrcmztographic systems the veiocities 

are typicaliy thousands of times greafer than v,,:. The effect of static diffusion is of 

the order of one millionth-that of dynamic difhsion, and can be completely ttegkted_ 
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The height of a theoretid plate is usuzdly so loge that the pipes are typically a 
tkction of 8 plate, or at. most a few pIates in lengtt Under these conditions we cgn 
use results fkom the simulation rmcle~ to obtain a useN approximation of the varkmlce 
contributed by these components. 

The simulation results for v. = 100 v,, are typical of all higher vekities. 
For short times afk injection the variance due to the spreading box-car, from eqn. 
3is 

4 = (vot)2 
(lao~z-) -= 

3 3 
= I2.529 (diceq 

where lis the number of iterations. For very large T, we know the variance increases 
linearly with T, with coefficients calculated from eqn. 14: 

lmvi dd_m =2 

dT * ( 48 ) 
= 2500 (slices)2/iteration (20) 

We can approximate the total variance aZ over the whole range of T with a 
fimction &z.t provides the correct square-law coe5cient, A, for small T, &nd the 
correct slope, B for large T. This function is 

(21) 

For TB-K 

while for T >> K 

da=__B 
dT = (23) 

and the characteristic value of T which separates square law from linear dependency 
is: 

result 

(24) 

Thus B = 2XlO (skes)2/iteration, and A = 12.5 (slices)2/(iteration~,~ with the 
that K= 100 iterations. The approximated variance becomes: 

bf = ~2~,ooo2 f 12.5T - 250,ocO (25) 

Fig. 11 is a plot of o#, where & is the total variance from the simulation 
model for vo = loo v..,. The plot is asymptotic to 1 for high values of T. Below 2 
iterations, it becomes slightly less than 1, refkcting the fm that the asymptote is 
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Fig. 11. Plot of the ratio cr3d as a function of time in iterations. One theoretical plate is 66.67 itera- 
tioas cvcrywhese on the abci~~ scale. See text. 

valid foor very low times only when the velocity ratio approaches i&n&y. The plot 
has its greatest value of about 1.17 at T = 100 iterations. 

That CT+ is smaller than IT, during the transition from box-car to gaussian 
distribution is attributed to the early forshortening of the tail end of the boxcar 
shape by diffusion in the bigb velocity gradient region. 

Having learned the critical features of the distribution from this simulation, 
we can devise a generally applicable formula for its physical counterpart. 

The number of plates, IZ represented by the characteristic time of 100 iterations 
in the simulation is: 

Therefore, in the physical counterpart time to flow 1.5 plates will also be the char- 
acteristic time. In the physical pipe, when v. >> v,,,,’ 

The time, r,, to flow one theoretical plate is 

(27) 

so we can set the characteristic time in the formula 

K=nf,= lSt, @3) 

We can now express the normalized variance for a box-car at times f > 1.5 fn 

as 

(%f)2 
2 - 3 t2 -= 

=() 

=- 
3’; (2% 

rao 2 
240 



Thus, in the approximate formula for normalized total variance. the coefkient 
A of ffie square law dependency is 

We can now use eqns. 24, 28 and 30 to lind B. 

(31) 

(32) 

If we defme a fimctioa 

we obtain the function plotted in Fig. 11. 

Models of the early phases of distribution 

A physical counterpart of the simulation described here is the spreading of 
an injec$ed dye slu,o in a carrier travelling in a transparent tube. The quantitative 
observation of the nearly box-czr distribution, with the more or fess extended bump 
at its ups&eam portion, could be a worthwhile experiment. 
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